We Are Fundamentally Different !

Almost all the conversational AI platforms out there in the marketplace use one core principle for modeling a conversation flow. We call it "Response to Response" modeling. That means, every node of the conversation flow corresponds to a particular response that the AI provides.

The Concept

In the example below, the blue nodes represent the responses from the AI system and the yellow squares represent the user. The blue nodes of the AI system generate a response depending on what the user says; the arrows define possible transitions. It doesn’t matter whether you manually define transition or you define it via some training data: you have to deal with the same complexity. If you are an experienced conversational AI developer, you know how complex the visualization becomes when handling a reasonable real-life scenario.

diagram

We believe this conventional approach is not the optimum way !

Our platform is developed with a vision to reduce the conversation flow modeling complexity and hence developers can focus on the ideas that really add value. This is the key to build high quality conversational AI experiences.

We introduce a novel way of building convresational AIs with our patent-pending approach. We call it the “3 Block Concept”, which allows developers to model a conversation flow in terms of sub-conversations rather than a “response to response” approach. As humans, we carry out conversations on any topic in terms of sub-conversations. Sub-conversations have limited scope (or a knowledge/fact boundary) and a goal. Upon achieving that goal, or by crossing the knowledge boundary, we move to the next sub-conversation. If we model conversation flows based on this analogy, we end up having fewer nodes than in a conventional design. Each node represents a piece of the conversation and importantly provides the functionality for a multi-turn dialog.

Now, let us look at how we can model the previous example with our approach.

diagram

One of the key differences you would notice is that the transitions are taking place based on the outcomes of a sub-conversation, rather than transitions taking place based on what the user says at a given time. The node count in the conversation flow is therefore reduced significantly. This approach abstracts out the key stages of a real-life conversations that you are going to automate and the flow is represented completely based on such stages. Hence, converting a real-life process into a conversational AI automation becomes simpler and more straightforward, enhancing the productivity of the developer.

The 3 Block Concept

Overview

The 3 Block Concept suggests a novel framework to build conversational AI's. According to the 3 Block Concept, a conversational scenario can be represented in a space of sub-conversations. We have observed that any sub-conversation can be categorised into one of three categories depending on their conversational nature and nature of goals achieved at the end.





Internals of a Sub-Conversation

The internals of a sub conversation is viewed as an arrangement of a Processing-Pipeline. Looking at how humans respond in a sub-conversation, we can observe that humans respond to a query from the other party, based on different ways of understanding or processing. Even though it is difficult to predict the next response in a conversation, the nature of the next response can be predicted in a given context.

This approach makes modeling conversations a lot easier in Sofia Platform and the platform can automate certain aspects of this using machine learning.

Blog

Recent Articles

COGNIUS.AI announces partership with pasia
Singapore, 29th July 2020
COGNIUS.AI announces partership with pasia
Singapore, 29th July 2020
COGNIUS.AI announces partership with pasia
Singapore, 29th July 2020